Math 4200-001
Week 7-8 concepts and homework
2.4
Due Friday October 16 at 11:59 p.m.

24 2,3,5,7,8,12, 16, 17, 18. Hint: In problems 2, 5, 18 identify the contour
integrals as expressing a certain function or one of its derivatives, at a point inside vy, via
the Cauchy integral formulas for analytic functions and their derivatives.

w7.1 Prove the special case of the Cauchy integral formula that we discuss on
Wednesday, in Monday's notes:

If yisa counter-clockwise simple closed curve bounding a subdomain B in 4, with z,

inside vy, then the important special case of the Cauchy integral formula can be proven

with contour replacement and a limiting argument, assuming f is C' in addition to

being analytic:
1 z
f(ZO)= Jf() dz.

w7.2 Prove the positive distance lemma, which we make much use of in proving
various theorems: If K = C is compact, and if K & O, where O is open, then there
exists an € > 0 such that for each z € K, D(z;€) S O. (This is equivalent to Distance
Lemma 1.4.21 in the text. See if you can find a proof without looking there first, but
in any case write a proof in your own words.)



Math 4200

Monday October 12

2.4 Consequences of Cauchy's integral formula: infinite differentiability of analytic
functions; Liouville's Theorem and the fundamental theorem of algebra.

Announcements:



2.4 Recall that before the midterm we proved the Cauchy Integral Formula, which lets
us express the values of an analytic function inside closed contours, via a contour
integral along these contours:

Theorem (Cauchy Integral Formula)

Let A = C be open

f:A— C analytic

v:[a, b]— C a piecewise C' closed contour in 4 that is homotopic (as closed curves in
A) to apoint. Let zy & y([a, b]).

Then

1 J /() dz=f(zo)l(y;zo).
v

The ingredients were:
(1) The fact that index is computed via our "favorite" contour integral integrand:

(7)1

2T l,Y zZ— ZO
¥
(2
’ T(B;2,)= |
IT(%;e,) <2
(2) The auxillary function
f(z) =f(z
( 0> zF Zy
g(z) =, S

f (ZO> z=z,

(3) The deformation theorem for functions closed curves homotopic to points in a
domain , applied to the function g.



Example: Let 7y be the circle of radius 2 centered at the origin and oriented
counterclockwise as usual. Find the value of

Jcos(2z) g
v (z -1)¢



We stated:
Theorem (Cauchy Integral Formula for Derivatives): Let f be analytic in the open set

A<= C, yapw. C! contour homotopic to a point in 4. Then for z inside vy, every
derivative of f exists and may be computed by the contour integral formulas

rya) =5 ({(_Cz)f a
v

(n)Z ) = n! f(C)
M@y 2) 2"’! o

notice, these are the formulas we get by induction and "differentiating thru the integral

sign" :

(S I P ( (9
= SO (-D(C=2) “(-1) (o)
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So, when can you justify this operation of differentiating thru the integral sign? That's

an analysis question!



Analysis answer! General setup: Let 7y as usual and

G(z) = | g(= ¢) dc.

v
(For our current needs we will be using the special cases
/(%)
g(z¢)= )
(€—2)"
By linearity of integration,
G(z+h) = G(2) _J gz+ht)—g(z8)
h - h o

v

We wish to know general conditions under which these contour integrals of difference
quotients converge to

[3=e=0) 4
v

as h—0. We certainly need that g(z, {) be complex differentiable in the z variable.
Then the following suffices: Suppose the difference quotients converge uniformly (with

0
respect to { € y[a, b]) to Eg(z, {). In other words,

Ve>036>0 suchthat V { € y[a, b]

|h| <6 = ‘g(z-I—h, C’Zl_g(z’ C) — aazg(z, C)‘ <eE.

If this uniformity condition holds, then

z — G(z 0
1 < 8 = | FERI=CEL 8o 1) g

Y

< [|glet bl sl O o) g < etensin(y),

Y
which implies



So, when can we verify the uniformity condition from the previous page?
Ve>0306>0 suchthat V { € y[a, b]

glz+h, C;l_g(ZaC) _ aazg(z’ )| <.

| h| <0 =

Estimate, assuming g(z, () is analytic in the z- variable and using e.g. line segment
contours from z to z + A:

dz+hcl_dLC):l{;ﬁ+hg%gﬁﬂﬁmv
1 0 0 0
T a . &\% ~  gw, Q) — ——gl\z dw
i area 0+ (e 0 - ghea0))
h O 1 0 0
~ 7 a,8\% m o g8w, §) — gl dw.
Pzt 0+ 4| (G - gne 0 )

Regarding the second term as the error term: If for sufficiently small p > 0,

%g(w, {) is continuous for (w, {) € D(z p) xy([a, b]), then it is uniformly

continuous, so
Ve>030<d<p suchthat V { € vy[a, b], |w—2 <9,

gm0 = 5 ela )| <e

And in this case, for |h| < d, the error term is bounded uniformly for { € y[a, b], by
1 a 3]

;L_}Hh (W (w. §) = 5-8(= ¢) )dw < ‘%

In our applications for the Cauchy integral formulas for derivatives,

E=E.

()
g( ’C) (C_Z)(I’IC)
0 " _ nf

is continuous for (w, {) € D(z; p) xy([a, b]) assoon as p is small enough so that
D(zp) xy([a, b]) =@ . (Positive distance lemma).

This finishes the analysis explanation for why the Cauchy integral formulas for
derivatives hold.



Corollary (Liouville's Theorem) Let f: C— C be entire. Suppose f is also bounded, 1.
e. 3 M € R suchthat [f(z)] <M Vze& C. Then f is constant.

proof: (It's very very short.)
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Fundamental Theorem of Algebra Let
p(z)=2"+a, "'+ . +az+aq
be a polynomial of degree n (scaled so that the coefficient of Z” is 1), with a; € C.
Then p(z) factors into a product of linear factors,
pz)=(z—z)(z—2z) - (z—z,).
proof:

« It suffices to prove there exists a single linear factor when n > 1 since the general
case then follows by induction:
(1) The FTA is true when n=1.
(1) If FTA istrue for n — 1, and if
Pal2) = (2= 2) Py —1(2)
then FTA is true for p,(z).

«  To show that p,(z) has a linear factor, it suffices to show that p,(z) has a root,
Pn(2,) =0. This follows from the division algorithm:

pp(z) R

z—a =4 —1(2) F z—a

where R is the remainder. This can be rewritten as
pu(z)=(z—a)q, _1(z) + R.

So p,(a) =0 if and only if (z — a) is a factor of p,(z).

Then the proof proceeds by contradiction: If p,(z) has no roots, then is entire,

1
Pn(2)

and

Show that must be bounded, so by Liouville's Theorem it must be constant.

1
P,(2)

This is a contradiction!



