
Math 4200-001
Week 7-8 concepts and homework

2.4
Due Friday October 16 at 11:59 p.m.

2.4     2, 3, 5, 7, 8, 12, 16, 17, 18.  Hint:  In problems 2, 5, 18 identify the contour 
integrals as expressing a certain function or one of its derivatives, at a point inside , via
the Cauchy integral formulas for analytic functions and their derivatives.

w7.1  Prove the special case of the Cauchy integral formula that we discuss on 
Wednesday, in Monday's notes:  

If  is a  counter-clockwise simple closed curve bounding a subdomain B  in A , with z0  

inside , then the important special case of the Cauchy integral formula can be proven 
with contour replacement and a limiting argument, assuming f  is C1  in addition to 
being analytic:

f z0 = 1
2  i

 f z
z z0

 dz.

w7.2  Prove the positive distance lemma, which we make much use of in proving 
various theorems:  If K  is compact, and if K O , where O  is open, then there 
exists an 0 such that for each z K , D z; O .  (This is equivalent to Distance
Lemma 1.4.21 in the text.  See if you can find  a proof without looking there first, but 
in any case write a proof in your own words.)

 



Math 4200
Monday October 12
2.4  Consequences of Cauchy's integral formula: infinite differentiability of analytic 
functions; Liouville's Theorem and the fundamental theorem of algebra.

Announcements:   



2.4  Recall that before the midterm we proved the Cauchy Integral Formula, which lets 
us express the values of an analytic function inside closed contours, via a contour 
integral along these contours:

Theorem  (Cauchy Integral Formula) 

Let A  be open
f : A  analytic
: a, b  a piecewise C1  closed contour in A  that is homotopic (as closed curves in
A ) to a point.  Let z0 a, b .
Then

1
2  i

 f zz z0
 dz = f z0 I  ; z0 .

The ingredients were:
(1)  The fact that index is computed via our "favorite" contour integral integrand:

I ; z0 = 1
2  i

 1
z z0

 dz.

(2)  The auxillary function

g z =

f z f z0
z z0

z z0

f z0 z = z0
(3)  The deformation theorem for functions closed curves homotopic to points in a 
domain , applied to the function g.



Example:  Let  be the circle of radius 2 centered at the origin and oriented 
counterclockwise as usual.  Find the value of 

 cos 2 z
z 1 ez

 dz



We stated: 
Theorem  (Cauchy Integral Formula for Derivatives): Let f  be analytic in the open set 
A ,  a p.w. C1  contour homotopic to a point in A .  Then for z inside , every 
derivative of f  exists and may be computed by the contour integral formulas

f z I  ; z = 1
2  i

 
f
z 2  d  

f n z I  ; z = n!
2  i

 
f
z n 1  d  

notice, these are the formulas we get by induction and "differentiating thru the integral 
sign" :

d
dz

f
z

= f 1 z 2 1 =
f
z 2

d
dz

f
z n

= f n z n 1 1 = n
f
z n 1 .

So, when can you justify this operation of differentiating thru the integral sign?  That's 
an analysis question!



Analysis answer!  General setup:  Let  as usual and
G z  g z,  d .

(For our current needs we will be using the special cases

g z, =
f
z n

)

By linearity of integration,
G z h G z

h =  
g z h, g z,

h  d .

We wish to know general conditions under which these contour integrals of difference 
quotients converge to 

  z g z,  d

as h 0.  We certainly need that g z,  be complex differentiable in the z variable.  
Then the following suffices:  Suppose the difference quotients converge uniformly (with

respect to a, b ) to  z g z, .  In other words,

0  0  such that   a, b  

 h   
g z h, g z,

h  z g z, .

If this uniformity condition holds, then

 h  G z h G z
h    z g z,  d  

 
g z h, g z,

h  z g z,   d  length ,

which implies

G z =   z g z,  d  .



So, when can we verify the uniformity condition from the previous page?
0  0  such that   a, b  

 h   
g z h, g z,

h  z g z, .

Estimate, assuming g z,  is analytic in the z variable and using e.g. line segment 
contours from z to z h:

g z h, g z,
h = 1

h z z h
  w g w, dw

=  1
h z z h

  z g z,   w g w,  z g z,  dw

= h
h  z g z,    1

h z z h
  w g w,  z g z,  dw.

Regarding the second term as the error term: If for sufficiently small 0, 

 w g w, is continuous for w, D
_
z; a, b , then it is uniformly 

continuous, so 
0  0   such that   a, b , w z ,  

 w g w,  z g z, .

And in this case,  for h , the error term is bounded uniformly for  a, b , by
1
h z z h

  w g w,  z g z,  dw   hh =  .

In our applications for the Cauchy integral formulas for derivatives, 

g z, =
f
z n

 w g w, =
n f
w n 1

is continuous for  w, D
_
z; a, b   as soon as  is small enough so that  

D
_
z; a, b = .  (Positive distance lemma).

This finishes the analysis explanation for why the Cauchy integral formulas for 
derivatives hold.



Corollary  (Liouville's Theorem)  Let f :  be entire.  Suppose f  is also bounded, i.
e.  M  such that f z M  z .  Then f  is constant.
proof:  (It's very very short.)
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Fundamental Theorem of Algebra  Let 
p z = zn  an 1z

n 1  ...  a1z a0
be a polynomial of degree n (scaled so that the coefficient of zn  is 1), with aj .  
Then p z  factors into a product of linear factors, 

p z = z z1 z z2 ..... z zn .
proof:

    It suffices to prove there exists a single linear factor when n 1 since the general 
case then follows by induction:
     (i)  The FTA is true when n = 1.
     (ii)  If FTA is true for n 1, and if 

pn z = z zn pn 1 z
then FTA is true for pn z .

    To show that pn z  has a linear factor, it suffices to show that pn z  has a root, 
pn zn = 0.  This follows from the division algorithm:

pn z
z a = qn 1 z  R

z a
where R  is the remainder.  This can be rewritten as

pn z = z a qn 1 z R .
So pn a = 0 if and only if z a  is a factor of pn z .

Then the proof proceeds by contradiction: If pn z  has no roots, then 1
pn z

 is entire, 

and 
1

pn z
 = 1
zn  an 1z

n 1  ...  a1z a0

= 1
zn

 1

1
an 1
z ...

a1

zn 1
a0

zn
.

Show that 1
pn z

 must be bounded, so by Liouville's Theorem it must be constant.  

This is a contradiction!


